Searchable 73,023 items

Metadata

International Journal on Electrical Engineering and Informatics, Volume 5, Issue 4, 2013, pp. 386-410

The fabrication of a MEMS-based translational vibratory z-axis gyroscope using DRIE on the surface and anisotropic etching on the backside of the standard SOI wafer

Abstract :

A new fabrication process of MEMS structure prototype of a translational vibratory z-axis gyroscope sensing element is presented. This structure consists of proof mass, driving devices, sensing devices, and suspensions, using the combination of MEMS bulk and surface technology with DRIE etching techniques on the surface and a suspended structure formation using anisotropic etching on the backside of the standard SOI wafer. The mask for the fabrication process was designed using L-Edit software. With this technique, the capacitance and the mass of proof mass can be increased thus increasing the gyroscope sensitivity to sense the Coriolis force. The MEMS-based translational vibratory z-axis gyroscope was static characterized by SEM measurements, visually and resistance measurement, wiring checking, and vibration checking by a given acoustic wave gyroscope excitation.

Keywords : Angular movements, Coriolis force, MEMS technology, MEMS-based translational vibratory z-axis gyroscope, Standard SOI wafer
Subject Area : Engineering(all)

Reference (39)

Cited (0)